
Education Cell

Student Exercises

Student Exercises

Table of contents

1) Introductory Exercises

2) Simple TCP Teaching

3) Simple Robot Programming

4) User Frame Teaching

5) Offsets and Position Register

6) Advanced Programming

7) Input / Output

8) Different Types of Stop

9) DCS Safe Zone

10) Customized iPendant Screen

11) Macro

12) Menu utility

Exercise 1: Introductory Exercise

Abstract

PLEASE
NOTE THAT

All exercise references are referred to:

R-30iB basic operator manual [B-83284EN_05]

In further exercises, we will just refer to it as Operator

Manual. (OM Section…)

Every exercise is based on knowledge acquired in previous

exercises. This means you should make sure that all the

knowledge in the exercise is known before continuing. If

something in the recapitulation is not known, or not very

clear, you should do that exercise again.

In the beginning of every exercise, we give you a list of

equipment, you need. You should make sure that you have

got all the needed equipment, because otherwise, you will

not be able to do every part of the exercise.

In this exercise, we will give you a quick overview of the basic

controls and knowledge needed for every other steps and exercises

on the robot.

After this exercise, you should be able to turn the robot on and off,

switch between the different modes and do some basic jogging.

Page 3

Exercise 2: Simple TCP Teaching

Abstract

In this exercise, we want to show you the concept and the setup of

TCP.

TCP stands for Tool Centre Point and is especially important for an

easier way to jog the robot in tool coordinate system.

But not only in jogging there can be a difference. Also when

changing the attitude of the final flange (and therefor of the tool)

while moving, the tool will not move in a linear motion and the speed

will be different from the one of the flange.

At the end of this exercise, you should be able to understand the

concept of TCP and the use of this setting, and you should be able

to set a TCP with all the different methods available.

Page 3

Exercise 3: Simple Robot Programming

Abstract

In this exercise you should learn the basics about programming a

robot and the different options available to program a robot.

After this exercise, you should be able to program a simple motion

and put comments into your program.

Page 3

Exercise 4: User Frame Teaching

Abstract

In this exercise, you learn the basics of User Frame teaching and

using.

User Frame (UFrame) is a Cartesian coordinate system that you set

up for an easier way to teach and operate your robot.

After you did this exercise, you should be able to put in place a

UFrame of your choice and do programs with that UFrame.

You should also be able to adjust your program to use it on different

UFrames and know how to program to be able to rapidly and without

much work change between several UFrames.

Page 3

Y

Z
X

UFrame

Exercise 5: Offset and Position Register

Abstract

In this exercise, you should learn the concept and use of the offset

function.

You should learn how to program an offset into the Position

Register(PR) of the robot an use this offset later in your program.

You should be able to program without using direct position

teaching, while using the PR for positioning and offset of your tool,

which should make your programing more effective, faster and also

easier.

Page 3

Actual Position

Position
with Offset

Exercise 6: Advanced Programing

Abstract

In this exercise, we give you a more thorough overview of the

different options and possibilities that you can use to program your

robot.

Using a simple program that we will change over the course of this

exercise, we want to show you all the different options and get you

to think about creating your own “more complicated” programs.

It is very important that you have done exercise 3 with success,

because this exercise builds on knowledge acquired in exercise 3.

In this exercise we put all the “solutions” right behind the

instructions. You should however try and do the exercise without

looking at those “solutions”. If you can’t, do the exercise with them

and then try and do it again without.

Also, try and put everywhere comments on what you have

programmed to make reading your program easier for other people.

This is not very important for this exercise, but as it is an exercise,

you should also practise this.

Page 3

Exercise 7: Input/Output

Abstract

In this exercise, you are going to learn about Input and Output (I/O)

of the robot.

I/O is nothing more than a simple mean to communicate through

signals with other devices.

I/O is very important if the robot does not operate on it’s own, but

with peripheral devices, such as detectors, cameras, other robots

etc.

To simulate other devices, we designed an I/O box.

This exercise can not be made without those boxes so we strongly

advise you to firstly build those boxes and then do this exercise. The

instructions and parts list needed are all included in the appendix of

this exercise.

To simulate those inputs and outputs, we will use switches as inputs

and LEDs as outputs to visualise them.

Page 3

Exercise 8: Different Types of Stop

Abstract

This exercise is kind of an overview over the different stops that are

available on FANUC robots, the reasons why we use the different

stops in different cases and norms that are behind those stops.

You should learn over the period of this exercise the differences of

the stops and when which stop will occur and understand why a

certain stop is used.

Page 3

Exercise 9: DCS Safe Zone

Abstract

In this exercise, you will learn the principles of DCS Safe Zone and

learn how to set up a DCS Safe Zone on your own.

DCS Safe Zone is an virtual box. You can either allow the robot to

move exactly in that virtual box, or tell the robot that it is prohibited

to move inside that box.

So DCS Safe Zones are used to restrict the movement of the robot.

But it does not have to be only a box, it can also be a more complex

shape.

Page 3

Exercise 10: Customized iPendant Screen

Abstract

In this exercise, you should learn how to customize the screen of

the iPendant (Teach Pendant) and how to call those screens in

programs.

You should also learn how the different controls available for

customization.

After this exercise, you should be able to create, upload and use a

html site for the TP.

Page 3

Exercise 11: Macro

Abstract

In this exercise, we want to show you the creation and the set up of

a macro.

A macro is a program you can call on the Teach Pendant with the

“User” keys. A Macro can also be called in other programs.

Page 3

Exercise 12: Menu utility

Abstract

Menu utility are macros you can use in programs. The macros are

special because they are like pop ups in the program where you

have to press a key to continue.

In this exercise, we will see 3 different types, the PROMPTOK,

PROMPTYN and LISTMENU.

Page 3

Exercise 1

Introductory Exercise

Page 2

Exercise 1

Introductory Exercise

Table of contents

Abstract - 3

Equipment - 5

Robot Controller - 6

Teach Pendant - 8

Robot - 10

Jogging - 11

Selecting a program - 13

Starting a program - 14

Recapitulation - 15

Page 4

For this exercise, you need:

Education Cell

Exercise 1: Introductory Exercise

Equipment

Page 5

The first thing that we start with is the controller.

The controller controls the robot, houses the hardware and software

and is in a way the “brain” of the robot.

On the following page we will go through the different keys and

switches on the controller.

Exercise 1: Introductory Exercise

Robot Controller

Page 6

Exercise 1: Introductory Exercise

Robot Controller

Three-Mode Switch (for more

details, refer to OM section

5.2.2 “Three-Mode Switch”)

Cycle start button, is used

to start a cycle.

Emergency stop

Button

Power switch

USB Port

Page 7

The Teach Pendant is used to operate and program the robot. It is

the interface between you and the controller.

All programming and testing is being done with the Teach Pendant.

For more details refer to OM section 2.3.1 “Teach Pendant”.

For a more detailed function overview of the Teach Pendant look at

the following page.

Exercise 1: Introductory Exercise

Teach Pendant

Page 8

Exercise 1: Introductory Exercise

Teach Pendant

Most Important features of the Teach Pendant:

1. Teach Pendant Enable switch enables Teach Pendant

2. Menu key displays the screen menu.

3. Select key enters program list.

4. Data key enters register list.

5. Function key displays the function menu.

6. Cursor keys move the cursor.

7. Step key enables/disables step mode. (refer to OM section 6.3.2

“Step Test”)

8. Hold key holds the program.

9. Enter key enters selected item.

10. Forward key forwards program to next line.

11. Coordinate key changes the coordinate system currently

selected.

12. Override key changes the override.

13. Jog keys allow to jog the robot in teach mode.

13

12

11

109
8

7
6

54
2 3

1

Page 9

The robot mechanical unit consists of several limbs connected to

each other with axes on which are set servo motors. Those servo

motors can move the robot axes independently from one another

and are commanded by the controller. In our case, the robot has got

6 axes.

For more details, refer to OM section 2.2 “Robot”.

Exercise 1: Introductory Exercise

Robot

Page 10

Firstly, let’s start with basic movements of the

robot.

To jog the robot (move the robot), the

automatic switch on the controller needs to be

on T1 or T2 (T1 is the safer way to work with

the robot, so we recommend to always use

T1).

Then you need to enable the Teach Pendant

with the Teach Pendant Enable switch.

You need to hold one of the Deadman

switches on the teach pendant in the

intermediate Position.

Finally you have to push a shift button and

press one of the jogging buttons.
For more information refer to OM section 5.2.3

“Moving the robot by Jog Feed”

There are several different Cartesian systems

that you can move your robot in.

For more details about the different coordinate

systems, refer to OM section 3.9 “Setting Coordinate

Systems”.

For jogging you can switch between those

different coordinate systems by pushing the

“Coord” button.

Exercise 1: Introductory Exercise

Jogging

Here we changed the

coordinate system from world

to tool.

Page 11

While you are in the Joint coordinate system, you can move joint by

joint with the different jog buttons.(the joints are written on the

jogging buttons)

In every other coordinate system you can move in the x-,y-, and z-

axes by pushing the first three jogging buttons, and do rotations

around those axes with the following three buttons.

Now try and jog the robot in the different coordinate systems and in

different directions until you get used to move the robot. Pay

attention to the differences in jogging in the different coordinate

systems.

Exercise 1: Introductory Exercise

Jogging

Page 12

To select a program, press the “select” button.

Now you can choose a program in the list.

To enter or select the program press the “enter” button. You then get

into the program and that program is then selected. The selected

program is displayed in the top part of the Teach Pendant display.

Exercise 1: Introductory Exercise

Selecting a program

Page 13

To start a program, you need to clear any obstacles in the motion

range of the robot.

Then you need to close the fence (in our case the cell door).

You need to put the Three-Mode Switch into auto mode and disable

the Teach Pendant switch.

Now the robot is in automatic mode.

If you press the cycle start button on the controller, the current

program will start.

Now, select the program AAA_Demo (see previous page for how to

select a program) and press the cycle start button.

The program asks you if all the pieces are in the right spot.

Check whether they are and proceed (press F2).

To stop the program again, you can press F2 again to End

the cycle after the end of the cycle.

Refer to the Education Cell Manual for more information.

Exercise 1: Introductory Exercise

Starting a program

Page 14

After this exercise, you should know the basics of the robot and the

robot controls.

You should be able to jog the robot in the different coordinate

systems and also joint by joint.

You should be able to select a program and start it in the automatic

mode.

Exercise 1: Introductory Exercise

Recapitulation

Page 15

Exercise 2

Simple TCP Teaching

Page 2

Exercise 2

Simple TCP Teaching

Table of contents

Abstract - 3

Background - 5

Equipment - 8

TCP Teaching Methods - 9

Three Point Method - 10

Six Point Method - 12

Direct List Method - 16

Two Point + Z Method - 17

Additional Information - 18

Recapitulation - 19

Appendix - 20

Page 4

Exercise 2: Simple TCP Teaching

Background

TCP stands for “Tool Centre Point”. This is a position defined

relative to the end part of the robot (J6 faceplate). It is normally

defined as the “Working Point” of the robot end-effector, for instance

the centre of the gripper or the end of the arc-welding torch. It is

important to set this position correctly both for teaching, since the

jogging keys can be used to move the robot around the TCP, and for

running, since the robot software controls the position and motion of

the TCP.

A correct TCP setting is making sure that the coordinate system of

the tool are along the tool axis. This allows to move the tool in a

much more intuitive way while jogging. A badly taught TCP could

mean that in operation the tip firstly would not be in the place that

the operator and the robot would like it to be and secondly, rotating

the tool tip will result in an unwanted movement of the tool tip while

touching or even damaging objects or the robot itself. (normally the

TCP shouldn't move while rotating around one or more axis)

When the TCP is taught correctly, attitude change of the tool will not

result in a change of speed or unwanted movement of the tool

centre point, but the robot will adjust its movement so that the speed

and movement of the tool will be correct.

For examples of TCPs see following page.

Examples of difference in movement with different TCP settings can

be found on page 7.

Page 5

Exercise 2: Simple TCP Teaching

Background

Page 6

Welding Torch Spot “X” Gun

Gripper Spot “C” Gun

In these pictures, the coordinate systems represent the TCP coordinate

system and the green dot represents the TCP.

Exercise 2: Simple TCP Teaching

Background

Page 7

In case the TCP is not

set, default TCP is the

flange of the robot and

so while moving the

robot and changing the

attitude of the tool, the

tool will not do a linear

movement so this

needs to be avoided.

When the TCP is set

according to the Tool,

the robot makes sure

that the tool moves

right and adjusts the

movement of the robot

so that the motion is

done according to the

tool.

Exercise 2: Simple TCP Teaching

Equipment

For this exercise you need:
Education Cell

Fixed Pin – on the table

Movable Pins:

Simple TCP Pin in the gripper

Bent TCP Pin in the gripper (torch tool)
Description of the pins is in the Appendix.

Page 8

Exercise 2: Simple TCP Teaching

TCP Teaching Methods

There are several different ways to teach TCP:

• Three Point Method

• Six Point Method

• Direct List Method

• Two point + Z Method

For further details refer to OM section 3.9.1 “Setting a Tool Coordinate

System”

Page 9

Exercise 2: Simple TCP Teaching

Three Point Method (TCP Auto Set)

For this method use the simple TCP pin.

With this Method, the robot calculates the Tip Point by using three

different approaches of the tip to an exact same point.

To do this approach the same point with your tip three times from

different angles and directions and record them.

After you have set the TCP with the Three Point Method try and

rotate the TCP using jog movement and observe if you can see any

movement of the tip. If you do please reconsider the Manual and

eventually do the Three Point Method again, until you are happy

with the results.

For further information refer to OM procedure 3-14 “TCP auto set (Three Point

Method)”

Following are example positions that you can use, that will work, but

you can also use your own positions. Just keep in mind that by

taking more extreme positions, the calculations of the TCP will be

more accurate.

Page 10

Exercise 2: Simple TCP Teaching

Three Point Method (TCP Auto Set)

First Approach Point: from the

top

Second Approach Point: from

the right, near the robot with

the tool tilted

Third Approach Point: from

the left, further from the robot

and the tool tilted in the

opposite direction

Page 11

Exercise 2: Simple TCP Teaching

Six Point Method

Why use Six Point method instead of Three Point method?

Three Point method is used for tools that are straight and in line with

the J6 Faceplate. If this is not the case, by using the Three Point

method, the tool’s coordinate system is not correct because the

axes aren’t aligned with the tool tip.

With the Six Point method, we are able to twist the coordinate

system in such way that it is aligned with the tool tip, so the tool

moves in a much more intuitive way (as seen above in the right

image).

By using the three point

method, we will end up with the

TCP in the left image. When

using the six point method, we

will be able to get the TCP in

the right image.

Page 12

Exercise 2: Simple TCP Teaching

For this method use the bent TCP Pin.

Firstly set the 3 approach points the same way as you did with the

Three Point method. (You eventually set the tip point for the robot)

Then put your tooltip vertically over the fixed pin tip and the bending

of the tool should be in a 90 degrees angle to the X-axis of the

World Coordinate System (WCS), then set Orient Origin Point. (Do

this Operation as carefully and as precise as possible, as this is key

to the precise coordinate system afterwards)

Six Point Method

X

Y

Z

Page 13

Exercise 2: Simple TCP Teaching

To set the coordinate system you need to move in the directions that

you want your coordinate system to be. Because you oriented your

tool bending in 90 degrees to the X-axis of the world coordinate

system, by moving in Y-direction (in WCS) you can set the X-axis

with a point on this line (this line will be your X-axis). Finally move

the tool upwards (Z-axis in WCS) and set the Z-axis. Now your

coordinate system is set according to your tool orientation.

Now the TCP should be set for the torch tool.

(Analog Procedure for the XY method)

Six Point Method

+X +X+Z

Page 14

Exercise 2: Simple TCP Teaching

To check if your TCP is set correctly check the following things:

• Check if while rotating, the tip is not moving.

• Check if moving in the different directions (X-,Y- and Z- in the

tool coordinate system) that the tool is really moving in the

expected way.

Finally, do the Three Point method again with the bend pin in the

gripper. Watch the difference of moving the tool while jogging

between setting the TCP with 3 point and 6 point method.

The bending of the bent TCP pin does not have to be in a 90 degree

angle, but we strongly advise you to put it in line with one of the

axes (X- or Y- in WCS) because this makes the definition of the

axes of the tool much easier.

For further information refer to OM procedure 3-15 “Setting up Tool Frame

Using the Six Point (XZ) Method”

Six Point Method

Page 15

Exercise 2: Simple TCP Teaching

Direct List Method

For this method use the simple TCP Pin.

For the Direct List method, you need to put in all the coordinates

and orientations manually. This method can be used if you know the

exact dimensions and orientation of your tool. This is a much easier

way to put in the information faster than with the Three Point or the

Six Point method.

This method only works if we know the exact dimensions of our

gripper and the piece.

As an exercise, go to the TCP set with the Three Point method.

Change the coordinates with the Direct List method and watch the

difference in behaviour while moving the tool in the Tool jogging

mode. (For example, offset the tool Z-coordinates and watch the

rotation around Y-axis with a new centre point in the point just set)

For further information refer to OM procedure 3-16 “Setting Up Tool Frame

Using the Direct List Method”

Page 16

Exercise 2: Simple TCP Teaching

Two Points + Z Method

For this method use the simple TCP pin.

This method is a combination of the Direct List method and the

Three Point method.

Firstly, input Z, W, P and R (by measuring those values)

Z is the measured distance between the J6 Faceplate and the tip of

your tool (in our case the Simple TCP Pin). W, P and R are not

important in our case because the Simple TCP Pin is straight and

aligned with the tool (all angles are 0 degrees). If this is not the case

you need to measure those angles and then put them in.

Then set the two approach points in the same way than with the

Three Point method.

For further information refer to OM procedure 3-17 “Setting Up Tool Frame

Using the Two Point + Z”

Page 17

Exercise 2: Simple TCP Teaching

Additional Information

Always make sure you set the right TCP setting with the SETIND

function before you try and move your TCP because otherwise the

old TCP setting is still active.

Page 18

Exercise 2: Simple TCP Teaching

Recapitulation

After this exercise, you should now be able to understand the

concept and use of the TCP concept.

You should be able to set the TCP for the different types of tools

with the different types of TCP setting methods and knowing the

difference between those methods and the effects of those

differences.

Page 19

Exercise 2: Simple TCP Teaching

Appendix

Simple TCP Pin – to be
held in the gripper

Fixed Pin – to be

fixed on the table

Bend TCP Pin – to be held

in the gripper

Page 20

Exercise 3

Simple Robot Programming

Page 2

Exercise 3

Simple Robot Programming

Table of contents

Abstract - 3

Background - 5

Equipment - 6

Creating a new Program - 7

Insert Position Data - 8

Execute first Program - 10

Change of Motion - 13

Comments - 14

Warnings - 16

Recapitulation - 17

Page 4

Exercise 3: Simple Robot Programming

Background

In industrial environment, we want our robot to do a certain work

over and over again. In order to do this, we program our robot once

so that it knows what to do and after this, the robot just keeps on

doing the same work. This makes the work process extremely

predictable and therefore highly efficient.

Page 5

Exercise 3: Simple Robot Programming

Equipment

For this exercise you need:

Education Cell

Page 6

Exercise 3: Simple Robot Programming

Creating a new Program

The first thing we need to do, is to set the Three-Mode Switch to T1.

Second, we need to enable the Teach Pendant

We then start by creating a new program.

To achieve this, push the “select” button. Then press F2 “Create”.

You then get asked a name for the program. Give the program a

name and press Enter. You are now in the program and ready to

input your first commands.

For more information about creating a new program refer to OM procedure 5-2

“Registering a program”.

Press F2 (Create) to create

new programs.

After you have created your

new program, you are left with

a blank program page.

Page 7

Exercise 3: Simple Robot Programming

Insert Position Data

Now jog the robot to a random position.

To record this position you have two possibilities:

Press shift+Point

Press Point

When doing this, joint motion

will be set as default motion.

When doing this, you will be

asked which motion to use.

For more information about different motion options refer to

OM section 4.3.1 “Motion Format”, 4.3.3 “Feed Rate” and 4.3.4

“Positioning Path”.

For more information about teaching a new point refer to OM

procedure 5-4 “Teaching a motion instruction”.

Page 8

Exercise 3: Simple Robot Programming

Now, jog to a second point.

Do the same procedure again whilst using shift+point.

This is now a very simple and basic program, which can already be

executed.

Insert Position Data

Page 9

Exercise 3: Simple Robot Programming

Execute first Program

Next step is to execute your first program and observe if the

program is doing what you want it to do. For this adjust the override

to 10% with the override buttons. This is to make sure the robot

does not operate at full speed, but at only 10%, so if something is

not happening as expected, you have time to stop the robot before

serious damage or injury might occur.

Page 10

Exercise 3: Simple Robot Programming

Then set the program to step. In order to achieve this, press the

“Step” button.

For further information about step mode operation refer to OM section 6.3.3

“Step Test”.

In our case it is not very important as this program only has two

steps, but it becomes much more important for bigger programs.

This setting provides, that the program only executes on step after

another and only if you tell the program to continue.

Execute first Program

Page 11

Exercise 3: Simple Robot Programming

Now to execute the program, you need to keep the Deadman switch

pushed, as well as the shift button and press the “FWD” (forward)

button.

The program now executes the line currently selected.

After your program has successfully finished the program, you can

gradually increase speed and if you feel confident that everything

works, you can press the “step” button again and the program will

be executed until the end.

Execute first Program

Page 12

PLEASE
NOTE THAT

The Shift and the Deadman switch need to be

pushed the whole time!

Exercise 3: Simple Robot Programming

Change of Motion

On default, the motion is set as joint motion. To change this, move

with the cursor on the motion you want to change and press “Type”.

You are then able to change between the 4 different motion types.

Set the two motion types to L (linear) and observe if you see any

difference in the execution of the program.

You are also able to change the speed of the motion in the program.

In order to do that, move the cursor to the speed setting. If you

press the “Type” button you can input the type of speed.

Change the speed type now to mm/s and the speed to 100mm/s.

Execute the program again and observe if you can see any

difference.

For more information about speed types and Feed rate refer to OM 4.3.3

“Feed Rate”.

For more information about changing motion and speed settings refer to OM

procedure 5-3 “Changing a standard motion instruction”.

Page 13

Exercise 3: Simple Robot Programming

Comments

You have successfully created and executed your first program.

In order to allow other people to understand what you were doing in

your program, we want you to put in some comments to explain the

different operations and positions.

This is not very important for our program because it is only two

lines, but later with programs bigger than 100 lines, it makes the

work of understanding a program a whole lot easier.

To do this we firstly need to put in a new line in front of our

command line. Move the cursor to the first line, press F6 (next) and

then F5 (EDCMD) and press “Insert”. You will be asked how many

lines to add. Add 1 line.

Then press F1 (INST), “Miscellaneous” on the second page and

then “Remark”. After pressing “enter”, you can enter a comment and

then afterwards, close the comment by pressing “enter” again.

Page 14

Exercise 3: Simple Robot Programming

Comments

Put a second comment between the first and the second motion

instruction.

You can also put comments directly into the position. In order to do

this, move the cursor on the position you want to comment end

press enter. Then you can enter your comment and press enter

again.

Your program should now look like this:

You have now learned the basics of programming the robot. You can

now put in more points and different motions and always put in

comments.

Page 15

Exercise 3: Simple Robot Programming

Warnings

Always jog the robot and execute the programs at low override

settings. It may be that you programmed a wrong point, or you are

not completely aware of the movement of the robot, so having the

override at a low setting means that there is enough time to stop the

robot before anything bad happens.

Until you are completely sure that your program works without any

problems or bugs execute the robot only on step mode. This will

prevent you from getting surprised and not being able to interact in

case of an unwanted movement.

Unless you haven’t tested your program on 100% override and

without the step function, do not operate the program in auto mode

because you are not completely sure that your program will work as

desired.

When executing program on auto mode, execute the program

several times on a lower override before raising it to 100%.

Page 16

Exercise 3: Simple Robot Programming

Recapitulation

In this exercise you should have learnt the basics about

programming a robot.

You should be able to program a simple motion command and

change the motion type and speed.

You should be able to add lines and comments to your program in

order to make it easier to understand the program.

You should be able to add comments to positions.

Page 17

Exercise 4

User Frame Teaching

Page 2

Exercise 4

User Frame Teaching

Table of contents

Abstract - 3

Background - 5

Equipment - 6

Defining a User Frame - 7

First Program with set User

Frame

- 10

Defining 2nd User Frame - 12

Adapting Program to 2nd User

Frame

- 14

Better Programing Method - 15

Warnings - 17

Recapitulation - 18

Appendix - 19

Page 4

Exercise 4: User Frame Teaching

Background

The User Frame defines a coordinate system specific to the

workspace, the robot is working on.

In our case this is not as important as in other cases because the

solitaire board is in the same plane than the world and is

perpendicular to the robot. Nevertheless moving the robot over the

solitaire board in World Coordinate System (WCS) is not very

practical, because the holes are not on an axis and so, moving from

one hole to another is not so easy in WCS. That’s why we define a

User Frame that is different to the WCS and aligned with the holes.

This function is even more important if the robot is mounted in an

inclined plane, or if the workspace is in the same plane but angled

different from 0 or 90 degrees. Defining a User Frame in this case

means moving the robot around is getting much easier and intuitive

and teaching and jogging will become much faster.

Page 5

For moving on the

solitaire Board the WCS

(black CS) is not very

practical

WCS

Exercise 4: User Frame Teaching

Equipment

For this exercise you need:

Education Cell

Simple Cylindrical pin

Page 6

Exercise 4: User Frame Teaching

Defining a User Frame

First we start by setting up a User Frame on the left solitaire board

side (as seen from the robot). We use the Three Point method. Use

the User Frame 6.

We start by setting the origin. In our case we take the first hole as

origin. This point is very important so do it carefully and with

precision. While having the pin in the gripper, adjust the robot so

that the pin is as exact as possible in the hole. Then set the height

so that a piece of paper can just slip between the board an the pin.

A second point is needed to set the X-axis. So move the Pin to the

nearest hole to the robot on that side of the board. Do the same

procedure as with the first hole.

Lastly, move the part to a third point on the board. The position (X-,

Y-) of this point is not that important, but keep in mind that with a

bigger distance comes a greater precision so don’t place it directly

besides on of the other two points. The important part of this point is

that the pin is at the same height than the other two points, so a

piece of paper should just be able to slide under it.

See following pages for images.

After you have set the UFrame press the SetInd (F5) button and set

UFrame 6 as active User Frame.

Page 7

PLEASE
NOTE THAT

Z-origin is set on top of the board, not in the board,

this is done because it is difficult to define the

bottom of the hole with precision

Exercise 4: User Frame Teaching

Defining a User Frame

Page 8

Origin set

Make sure that a piece of paper

can still glide between the pin

and the board

Exercise 4: User Frame Teaching

Defining a User Frame

Page 9

Third Point set

For further information about how to setup a User Frame refer to OM

procedure 3-18 “Setting Up User Frame Using Three Point Method”

X-axis set

Exercise 4: User Frame Teaching

First Program with a set User Frame

Now do a simple program while using the defined User Frame to

move a pin from one hole to another.

Make sure, that you position the gripper with and without the pin

exactly above the hole, a bit higher (some centimetres) before the

gripper goes down, otherwise, the gripper will crash into the pin, or

the pin with the gripper will crash into the board.

In the Appendix, we put an example program, so you can look how

to do the program if you are not able to do one of your own.

Make sure to use the same UFrame whilst teaching points as whilst

using those points in a program.

Page 10

PLEASE
NOTE THAT

If you are not able to do this program, we

strongly recommend you to revise exercise 3

Exercise 4: User Frame Teaching

First Program with a set User Frame

Make sure that you tell your program to use the right User Frame.

Press F1 (INST), “Offset/Frames”, “UFRAME_NUM” and enter the

UFrame you want to use. (In our case Frame 6)

Page 11

Exercise 4: User Frame Teaching

Defining 2nd User Frame

If this program is set, the User Frame utilized is the User Frame of

the left side of the Solitaire board. (UFrame 6)

We now want to use the same program on the other side

In order to do this, we set a new User Frame on the other side of the

board, but this time using the hole the furthest away from the robot

as X-axis point. Use User Frame 5.

Page 12

Exercise 4: User Frame Teaching

Defining 2nd User Frame

Page 13

Y

X

Z

Y

Z
X

UFrame 6

UFrame 5

Exercise 4: User Frame Teaching

Adapting Program to 2nd User Frame

Now try and use the same program again. Pay attention to change

the User Frame in the program, because otherwise the program will

do exactly the same as last time. (From UFrame 6 to UFrame 5)

You will notice that the program won't start and on the Teach

Pendant appears a fault.

To make the program work, make the UFrame 6 the frame of the

right side of the board.

Again change your program to UFrame 6 and now your program

should also work on the right side.

Now we see that with this method, we can actually transfer a

program from one side of the board to another by only changing the

User Frame. But it still is unpractical, because now we have lost the

User Frame of the left side, and to transfer the program to the left

side again it would need the same work again, which is annoying.

Page 14

UFrame 6

UFrame 5

Exercise 4: User Frame Teaching

Better Programing Method

So now we want to try and create a program that can be used for

both sides without the need of changing the User Frame every time.

To do this we first have to program the two User frames again. So

now program the left User Frame as UFrame 4 and the right one as

UFrame 5. Clear the UFrame 6.

Page 15

UFrame 4

UFrame 5

Exercise 4: User Frame Teaching

Better Programing Method

Put in front of your program a position record order to record the

position of the UFrame that you want to use. Then you set the

UFrame that your program uses to the position record you just did.

Now by only changing the UFrame in the third line, your program

can work with both UFrames without having to change the UFrames

every time.

For further information about position record register or register in general

refer to OM section 4.5 “Register Instructions”.

Page 16

Exercise 4: User Frame Teaching

Warnings

Attention!

By changing the UFrame to the opposite side, it may be possible

that the robot moves, or behaves in a way that you would not

expect. This is due to the change of the Frame and we easily make

faults while trying to understand the difference in movement. This

means that you should use a slow override and always follow the

exact path of the robot and check that there won’t be any problems

with the cable of the gripper. The first time the robot should be in

step mode so that you can easily abort the program if you see any

problems. When the robot does the program successfully without

any trouble, you can gradually increase the override and later go to

automatic.

If you do not pay attention, the robot might collide with the robot cell,

or the cable might be torn apart which could result in potential

damage of the robot and the cell.

Page 17

Exercise 4: User Frame Teaching

Recapitulation

Now you should be able to know the benefits of a UFrame in

comparison to the fixed World coordinate system.

You should be able to set the UFrame with the three point method.

You should be able to transfer a program from one UFrame to

another.

You should be able to change a program to work with more than just

one defined UFrame and so make the program more flexible.

Page 18

Exercise 4: User Frame Teaching

Appendix

Example program to put the pins from one hole to the other.

Attention!

You need to teach the positions by your own, it is not enough to just

copy this program as P[1] to P[6] were taught beforehand.

Remark:
Picking and releasing positions are not the same. This is due to the fact that

the pin might not be entirely in the gripper, so descending with the pin in the

gripper may result in a crash with the table, so it is better to set the releasing

altitude a bit higher than the actual picking altitude

Page 19

Exercise 5

Offset and Position Register

Page 2

Exercise 5

Offset and Position Register

Table of contents

Abstract - 3

Background - 5

Equipment - 5

Input Position in Position

Register

- 6

Input Offset in Position

Register

- 8

Robot - 10

Example Program - 11

Recapitulation - 14

Appendix - 15

Page 4

Exercise 5: Offset and Position Register

Background

This exercise will be similar to the last one and most importantly, the

effect/execution of the program will be the same (if correctly done).

With Tool Offset, you can as the name suggests it, offset your tool

by a certain value. This can be particularly practical if you use the

same position at different heights for example, as we do to move

over a hole, pick up the pin and release this same pin.

Position Register is used to save a Position or an offset as a

variable in the robot. The Position Register can be set before the

execution of a program or while the program is executed.

When using offset and Position Register, we can make our

programs much simpler and with less position teaching than before.

Reminder: to get further information and details about Position Register refer

OM section 4.5 “Register Instructions”.

Page 5

Exercise 5: Offset and Position Register

Background

Here is a little example of what is meant by tool offset:

Page 6

In this case, we have used a position and an offset in Z-direction.

When adding this offset to the position, the Z-coordinate of the

position will change and therefore the height in the World

Coordinate System.

Actual Position

Position
with Offset

Exercise 5: Offset and Position Register

Equipment

For this exercise you need:

Education Cell

Simple cylindrical pin

Page 7

Exercise 5: Offset and Position Register

Input Position in Position Register

As already mentioned, Position Register is a sort of variable

memory for positions and offsets.

To set a position, you can either input the values directly (with

“Position” key), or you can record the positions from the robot, which

we recommend you to do.(with “Record” key)

So firstly, start by setting the two positions you want to move the

pins (you can also record more than just two positions, so you can

put your pins in more than just two holes, but we only cover the two

first holes, the other ones work exactly the same).

Again, put the pin exactly in the hole, and then go up on the z-axis

to have the pin perfectly aligned with the hole and at the right height.

Page 8

Exercise 5: Offset and Position Register

Input Position in Position Register

Page 9

To record the position into PR press Data, set Position Reg in [Type]

and select the PR you want to record your position.

Then do the same procedure on the second hole you want to set.

After you have set this position, go to position 1 and write down the

Z-height of that position and input this same value manually

(Position) into position 2 so that both positions have the same Z-

value and can use the same offsets.

Exercise 5: Offset and Position Register

Input Offset in Position Register

Now set an offset in the PR. The offset should only be in Z-axis and

is depending on the position you chose as first position (position

above the first hole).

This setting is based on trial and error. First put in a small offset and

then gradually increase the offset until you get the offset you want to

have. Pay close attention as to have the override at a small value so

that you can stop the robot if it is moving to far or in the wrong

direction.

The best way of doing this is by setting up a similar program than in

exercise 4, while using the PR values set as positions and then

using the offset. Then let the robot execute the offset an check

whether the offset is right or not. If it isn’t, go back to the PR and

change your offset value slightly and try again.

We recommend also that you input two offsets: one offset to pick up

the pin, which should be precisely the height at which the gripper

can grip the pin, and a second one a bit higher to release the pin, in

case the pin is not entirely in the gripper.

To get further information about how to program with offsets refer to OM

section 4.11 “Offset Condition Instruction” and 4.12 “Tool Offset Condition

Instruction”

Page 10

Exercise 5: Offset and Position Register

Input Offset in Position Register

To put offset into PR you operate in the same way as for the

positions, only that instead of recording you go into “Position” and

put in the value manually. Put every value except Z on 0 an then

start with small values for Z (5 for example).

Page 11

Exercise 5: Offset and Position Register

Example Program

Now as you have set both Position and Offsets in the PR, you can

create a new program, only this time instead of using positions, you

directly use the positions set in PR and then with the tool offset

function, you go down to grab or release the pin.

To use a position from PR, simply press the record key. Move with

the cursor to the position and change the “Type” to PR then set the

PR value you want to use.

As you have set the program you will probably notice that it takes

less time to program this way than it took with the other (simpler)

method.

You need however to pay attention, that this method is depending

on which UFrame and which Tool Frame you use. The use of a

wrong frame will result in an unwanted movement of the robot,

which could result in human injury and/or damage of the robot.

Page 12

PLEASE
NOTE THAT

As you have set the program in exercise 4 we assume

you know how to do this program. If you don’t, please go

back and consider exercise 4. To make sure your program

is right we put a reference program in the appendix.

Exercise 5: Offset and Position Register

Example Program

Page 13

First record a random position then move with the cursor on

that position

You then press the “Choice” button and select PR[] and set the

wanted value.

Exercise 5: Offset and Position Register

Recapitulation

During this exercise you should have learned the basics about

inputting positions and offsets in the position register.

You should be able to record and set certain values in the PR.

You should be able to use those values in your program.

You should be able to do a program entirely based on PR without

the need of recording every single point.

Page 14

Exercise 5: Offset and Position Register

Appendix

Here is the program that we used for this exercise. Please note that

this is according to our values saved in our PR, so those values can

change according to your own settings.

Page 15

Exercise 6

Advanced Programing

Page 2

Exercise 6

Advanced Programing

Table of contents

Abstract - 3

Background - 5

Equipment - 6

First Program - 7

Deleting - 9

For To Function - 10

Position Register - 13

If Function - 14

Secondary Programs - 15

Jump Label - 16

CNT - 17

Wait Function - 19

Recapitulation - 20

Page 4

Exercise 6: Advanced Programing

Background

Until now, you only have seen the really basics of programming. In

exercise 4 and 5 you have already seen some more advanced

techniques but we want to go a bit more into detail what you did

there and even go deeper into what can be done with the robot.

This is important as the most applications afterwards will not be as

simple as a simple move between two or more points.

As an example, the robot may distinguish between different

situations in a program and then decide which sub-program to call.

Page 5

Exercise 6: Advanced Programing

Equipment

For this exercise, you need:

Education Cell

Page 6

Exercise 6: Advanced Programing

First Program

First thing we need to do, is to set the User Frame.

Press F1 Inst, then on page 2 number 4 Offset/Frames then

UFRAME_NUM= and set it to 1 (World User Frame).

Page 7

Exercise 6: Advanced Programing

First Program

Start by programming 4 different points in linear mode and 100mm/s

speed. It is best to place them more or less in form of a rectangle.

You should also use the same height. Start the program.

Page 8

Exercise 6: Advanced Programing

Deleting

Now insert a row in between position 2 and 3. If no command is

being set here, this line will not affect your program. To delete this

line whether there is a command or not, push the EDCMD button

(F5) and then select delete. You will be asked if you want to delete.

Press F4.

Page 9

Warning!
Deleting a line can

cause serious damage

to a program so before

you delete al line make

sure that you are

completely aware of

what this will change in

your program.

Exercise 6: Advanced Programing

For To Function

To let the program do the same motion or operation several times,

there is the possibility to use “For to” functions.

So now we want to add a “For to” function.

Insert a new line above the motion instructions and press the “Inst”

button and then input a For to.

Choose a register. Make sure you use a register that has not been

used in another program. (You can use R[32], this register should

not be used by default)

Use the constant type twice and input 1 and 10.

Page 10

Exercise 6: Advanced Programing

For To Function

This means the program will repeat the procedure below and on

every repetition, the register value will increase by one. So it will go

from 1 to 10.

Now you should go to the register overview (press data button then

as “type” choose Register) and rename R[32] in a way that you

remember what it is used for. This name will also be indicated in the

program.

Page 11

Exercise 6: Advanced Programing

For To Function

Start your program. You will see that the program will not start. This

is due to the fact that the robot does not know how far the ForTo

function is going. To resolve this, add and Endfor at the end of the

program. (same procedure as for ForTo, only that you choose

Endfor)

Now start the program again. This time the program should execute

the movement 10 times.

To see what happens in the register, we will add a second display.

Press shift+disp and enter double. You now have two displays. To

change between your different screens push the disp button without

shift. Change to the second one and press Data button and change

the type to Register. Now you can see the operations that your

program does to the register. Start the program again and watch the

register increase.

For further information about ForTo, refer to OM section 4.18 “For/Endfor

Instruction”.

Page 12

Exercise 6: Advanced Programing

Position Register

Now put the different positions into the PR to use them in secondary

programs.

Create two new programs that you call Advanced_Program_part1

and Advanced_Program_part2.

Page 13

Exercise 6: Advanced Programing

If Function

We want to let our program then do once the movement in the one

direction and once in the opposite direction. Therefore we use an “If”

function. It is used to check whether a declaration is right or not. If it

is, it executes a given operation, if not, it just goes to the next

command line.

In order to achieve our goal, insert a register instruction (F1 Inst

then 1 Register) to calculate R[32] mod 2 (every second time, we

will then get an input of 0). Input this value in R[33] (or another free

register).

Now we need two if commands. One is calling

Advanced_Program_part1, if the register equals 0, the other is

calling Advanced_Program_part2 if the register equals 1.

For further information about if function, refer to OM section 4.7.4 “Conditional

Branch Instructions” and 4.7.5 “If then/Else/Endif Statement”.

PLEASE
NOTE THAT

Else functions are not included in the Education

Cell package.

Page 14

Exercise 6: Advanced Programing

Secondary Programs

The first program should execute the movement “the wrong way

around” whilst the second program should do it “the right way

around”.

Page 15

Exercise 6: Advanced Programing

Jump Label

There is the possibility to use jump commands. The Jump LBL is

used to jump to a specific label (defined in your program).

To use the jmp lbl, Press F1 (Inst) then 5 (JMP/LBL).

We have changed below Advanced_Program_Part1 to use it with

Jump commands. As you can see it is very messy and not useful in

this case. It should only be used as showcase. You can try and

change your program to see that this function works and that there

is no change in motion between the two possibilities.

For further information about jump function refer to OM section 4.7.1 “Label

Instruction” and 4.7.3 “Unconditional Branch Instructions”.

Page 16

Exercise 6: Advanced Programing

CNT

Now we want to make our program more efficient meaning that the

program takes less time. In order to do that we can use the CNT

function instead of the Fine function. This does that the robot does

not move exactly to one point but only moves in the environment of

a point and then continues without stopping.

For more information about CNT motion refer to OM section 4.3.4 “Positioning

Path”.

To see the difference, change the Advanced_Program_Part1 back to

the right way around but change the motion setting from fine to CNT.

Page 17

Exercise 6: Advanced Programing

CNT

When this program works without any problems, change the speed

to 1000mm/s.

Attention: You MUST put override at 10 % or less and leave it

there. Target of this setting is not to make the robot fast!

In your main program put in an extra line in front of the program and

put in an override set function (inst-miscellaneous-override) and set

it on 10(%). Don’t change the override while the program is

executing.

Now run the program again and you will notice, that the path is

much more round than before and also it is faster than with the fine

setting.

This is due to the fact that the robot executes exactly the path, that it

would do at 100% override (1000mm/s). The faster the speed of the

motion the more CNT affects the motion.

Page 18

Exercise 6: Advanced Programing

Wait Function

An additional option is to add a wait function.

This function will wait until a given time (by register or constant) and

then continue in the next line.

Now add a wait function in every sub-program you called.

For more information about wait function refer to OM section 4.8.1 “Time-

specified Wait Instruction” and 4.8.2 “Conditional Wait Instructions”.

Page 19

Exercise 6: Advanced Programing

Recapitulation

In this exercise you should have learned the more advanced

methods of programming making more complex programs which will

help to develop more sophisticated programs and executions.

You should be able to use For to and If then clauses and call

different sub-programs in your main program.

You should know the difference in path that makes your Tool if you

use CNT function instead of FINE.

You should now the influence of speed on the CNT function.

You should now how to use the wait function.

Page 20

Exercise 7

Input/Output

Page 2

Exercise 7

Input/Output

Table of contents

Abstract - 3

Background - 5

Equipment - 6

Digital Inputs and Outputs - 7

Interconnect - 13

Group I/O - 15

User Inputs and Outputs - 19

Multiple Programs in Parallel - 23

Recapitulation - 28

Appendix -- 29

Page 4

Exercise 7: Input/Output

Background

As already mentioned, I/O is used to let the robot communicate with

other devices. The robot can get information from sensors or

cameras or other devices through Input and give orders to motors,

other robots etc. through Output.

For example, one robot gives an output to a second robot as soon

as it has finished his work on a specific work part, so that the

second robot can start it’s own program on that part, and knows,

that the first robot has finished with that part and is not in the way for

further operations.

Another example is that a proximity switch can detect that a piece is

at the end of a conveyor and then tell the robot to pick it up.

For more information about what is I/O refer to OM section 3.1 “I/O”.

Page 5

Exercise 7: Input/Output

Equipment

For this exercise, you need:

Education Cell

Input/Output Boxes (description is in the Appendix)

Page 6

Exercise 7: Input/Output

Digital Inputs/Outputs

Firstly, we will go to the input and output window. Press the menu

button, and then select 5 I/O.

You are now in the I/O menu. Change the type to Digital. To change

between input and output, you can press F3 (IN/OUT). Go to output.

As we only have outputs from 101 on, press the Item button and

insert 101 then enter, so you will be redirected to the DO[101], our

first LED on the Box. Try and change this output. You will see that it

is not possible, as it is related with the robot being in the home

position or not.

You can however change the other outputs and watch the LEDs

going on and out again.

Now we will go to the inputs. Go directly to DI[101]. They should all

be OFF. Now toggle one switch and see if the input switches to ON.

See if all switches work without exception.

There is the possibility to “simulate” the input. Move the cursor to

Sim and then press F4 Simulate. Now you can toggle the Input to

On. If you Unsim it again, it will again be switched OFF (if there is no

Input on that line).

For further information about simulate I/O refer to OM section 6.4.2 “Simulated

I/O” and procedure 6-11 “Simulated input/output”.

Page 7

Exercise 7: Input/Output

Digital Inputs/Outputs

Now we want to create a new program to use the new I/O.

Firstly, set UFrame to 1 and set Override to 10%.

Now you can call different programs for different inputs from your

Digital I/O Box. We put an example below. Pay attention on what

program you call, because it may be that you change the Override

or the User frame during one program and you don’t change it back

for another program which can cause serious damage.

Page 8

Exercise 7: Input/Output

Digital Inputs/Outputs

As a second exercise, we will do a little more complicated program.

We want to “build” a stop watch.

The LEDs should indicate the time in Binary. (Pay attention that

DO101 is used for indicating whether the robot is in HOME position,

so this LED can’t be used for our program)

We need 3 switches to start, stop, and reset the timer.

Tip:
Use 3 different programs:

Set all DOs to OFF

Transforms a decimal number into binary and sets the outputs.

Main program which handles the different inputs and sets the timer

(with Register).

Solution is on following pages.

Page 9

Exercise 7: Input/Output

Digital Inputs/Outputs

Page 10

Setting the Outputs on OFF

Exercise 7: Input/Output

Digital Inputs/Outputs

Page 11

Transforming a decimal number into binary

and setting the outputs.

Exercise 7: Input/Output

Digital Inputs/Outputs

Page 12

Main Program

Exercise 7: Input/Output

Interconnect

With interconnect you can give the robot an Input which will trigger

an Output regardless of when. (be careful when you use

interconnect).

In this example we will use the DI101 to open the gripper. If DI101 is

on the gripper will open and if DI101 is off the gripper will close.

To set up the interconnect press “MENU”, ‘5 I/O’ and press ‘9

Interconnect’. We have to be in the screen with DI as input and RO

as output. Press F3 “Select” and then ‘2 DI->RO’.

Go to number 7 and for DI enter the number 101. The interconnect

is disabled so go to disabled and press F4 ‘Enable’ to enable (with

F5 you can disable the interconnect again).

For further details go to the OM section 3.6 “I/O Connection Functions”

Page 13

Exercise 7: Input/Output

Interconnect

Now when you switch the DI101 on the gripper will open and if the

DI101 is off the gripper will close.

However this can bring unforeseen results with it.

To demonstrate it you should take all cylinders out of the Education

Cell and start the program AAA_DEMO in ‘AUTO’ mode.

When the program is executed turn the DI switch on and off to see

what happens, especially when the robot is just about to grab or

release a cylinder.

Page 14

Exercise 7: Input/Output

Group I/O

The Group I/O is used when 2 or more Inputs or Outputs are used

simultaneously. The value of a Group I/O is binary number (1, 2, 4,

8, 16, 32, …).

For this exercise we will use the DO[102] to DO[108].

First of all we want to have a split screen to have it easier to set up.

Press “SHIFT” and the “DISPLAY” key and select ‘2 Double’.

On the second screen go to the DO screen. Then press F2 ‘Config’.

On the first screen, press “MENU”, ‘5 I/O’ and then ‘5 Group’. We

need to be in Output (GO). Then press F2 ‘Config’.

At line 4 on the second screen you see DO 101 to 120. That line

gives us the information we need to set up the Group.

We use GO[1], in ‘Rack’ put in the number ’48’, in ‘Slot’ number ‘1’.

The start point is DO[102] so put in ‘START PT’ the number ‘2’ and

in ‘NUM PTS’ number ‘7’ because we go to DO[108].

Page 15

Exercise 7: Input/Output

Group I/O

Now we have to cycle the power.

Use the split screen again and see which value GO[1] has when you

turn the different LEDs on.

Now we want to program a LED show. In this program we use the

GO[1] to turn the different LEDs on.

For more information on ‘Group I/O’ see OM section 3.1.2 “Group I/O” and procedure 3-2

“Configuring Group I/O”.

Page 16

Exercise 7: Input/Output

Group I/O

The first program will turn the LEDs on like a wave from DO[102] to

DO[108].

In the next program the DO[105] will be the epicentre and then the

other LEDs will turn on.

Page 17

Exercise 7: Input/Output

Group I/O

As you can see this makes it a lot faster to program and the LEDs

will turn on/off simultaneously. If you always program with

DO[…]=ON then it can be that there will be a small lag and will not

look as good.

You can use also the Group Input for the switches. GI works the

same as GO only with inputs instead of outputs.

Page 18

Exercise 7: Input/Output

User Inputs/Outputs

We now start to operate with our UOP Box (User Operator Panel).

This should emulate a panel like the ones used in industry, to input

the very basic commands such as start and program selection.

Program selection is made via the PNS switches. A program that

you want to be called, has to be named PNS followed by a 4 digit

number (e.g. PNS0011). PNS is read as a binary number when no

program is on hold and the start button is pressed.

For more information about UOP I/O refer to OM section 3.3 “Peripheral I/O”

and procedure 3-5 “Assigning Peripheral I/O”.

Note that in our case we only have the simple assignment for UOP (Simple

CRMA16).

Page 19

Exercise 7: Input/Output

User Inputs/Outputs

Firstly we need to enable UOP to be able to command the robot

from the UOP. Press the menu button, then on the second page

System (6) then Config(6).

7 Enable UI Signals has to be set on True and 8 Start for continue

only on False.

42 Remote/Local Setup set on Remote

44 UOP auto assignment set on Simple(CRMA16)

Now cycle power to make the settings valid.

For further information about setting up UOP refer to system config menu in

OM section 3.15 “System Config Menu” and procedure 3-33 “Setting the

System”.

Page 20

Exercise 7: Input/Output

User Inputs/Outputs

By now we start with a simple example of starting a program from

the UOP.

Select a program with the teach pendant. Put the Controller on Auto

mode and turn the teach pendant off. Now Enable the UOP (ENBL)

and press the Hold button on UOP (Hold signal is active low, so

should normally be high). Press the Start button. Notice that the

program will only start at the release of the Start button.

You have now started your first program from a UOP.

We now want to go a step further and be able to select a program

from the UOP. In order to do that we need programs to be called

PNS plus a for digit number. Go ahead and copy a program and

name the copy PNS0001. Now before you toggle the start switch,

toggle the PNS selector switch (in our case PNS1). The program

PNS0001 should be started.

For further information about the PNS selecting function refer to OM section

3.8.2 “Program Number Selection (PNS)”, procedure 3-9 “Setting the PNS

function” and procedure 6-15 “Automatic operation by program number

selection”.

Page 21

Exercise 7: Input/Output

User Inputs/Outputs

While the robot is operating you will notice the LEDs that are on.

First LED, ENBL goes on if operator panel is on. The last LED,

BUSY is on while a program is running. Then there are the two

LEDs in the middle. The second in the row is the FAULT LED and

third is the BATALM. BATALM should not occur while operating the

robot, so we will not go to much into detail, you can for more

information refer to the manual.

The FAULT LED however can occur and we want to simulate one. In

order to do this, start a program. While the program is running open

the door of the cell. The robot stops and the FAULT LED is turned

on. This is due to the circuit breakage of the fence. Close the door

again, press the reset button (on UOP) and resume the program

(with start on UOP).

Page 22

Exercise 7: Input/Output

Multiple Programs in Parallel

Lastly we want to show you, that you can also run several programs

in parallel instead of only one program after another. This is

particularly practical if you want to move the robot as well as let it

command exterior equipment as well.

To show this, we will do the moving program (10 times the square

movement) at the same time than the timer program. Again, this is

not very important nor practical in our case, but there are different

situations where this can be very practical. Feel free, after this

exercise of thinking about such a scenario and do the programming

yourself. After you have done all the exercises including this one,

you should be able to do this.

As we may want to use that program again later without those

additions, make a copy of that program which you call

Advanced_Prog_Ex_IO. Continue on working on that program.

For more information about Run command refer to OM section 4.16.1

“Program Execution Instruction”.

Page 23

Exercise 7: Input/Output

Multiple Programs in Parallel

Go into the Advanced_Prog_Ex program. Add a new line behind the

override instruction. Add a Run Command (Instr second page 5

Multiple Control) and Run I_O_Timer.

Try and start your program.

The program will not start and the TP will output “PROG-040

Already locked by other task”.

To resolve this you need to change the Group Mask of the programs

used in the Run command (I_O_Timer, DO_Set_OFF,

Register_To_Binary) from 1 to *. This can be done by pressing F2

Detail.

Page 24

For more information about Group Mask, refer to OM section

4.1.4 “Group Mask”.

Exercise 7: Input/Output

Multiple Programs in Parallel

Now your program should start and be able to run both programs in

parallel meaning that the robot is moving while you can “play” with

the stopwatch.

As mentioned, you are able to “play” with the stopwatch meaning

that it has no use in our program. As the robot is not built to play

with, we are now going to change the program so that the one

program is interacting with the second one, so that the programs do

run independently, but after all are connected to each other in some

way.

We have already input a wait instruction after the program has

achieved one tour. We now want to change that wait signal so that it

does not wait exactly 2 seconds, but that it waits until a specific

register value used in the second program is achieved. In doing so,

the motion program always waits on the non motion program so that

they are connected.

Page 25

Exercise 7: Input/Output

Multiple Programs in Parallel

In the following, we have put the changed parts of the program.

Page 26

Exercise 7: Input/Output

Multiple Programs in Parallel

Run the program and pay attention whether the program stops if the

counter is not at a multiple of 15. You can try and stop the counter or

reset it an start again. The program should wait for the right time

and then continue with the next motion.

After the motion finishes, the program will continue to run, because

the Timer program does not have a stop. To change that, use a

register that will be checked by the timer program and end that

program when the motion program is ended.

Page 27

Exercise 7: Input/Output

Recapitulation

In this exercise, you should have learned the principals of Input and

Output.

You should know the different options there are with inputs and

outputs and be able to create a program that executes two different

programs at a time (only one being a motion program(!)).

You should be able to set up a User Operator Panel and run the

robot through this panel.

You should be able to connect peripheral devices to the robot and

set the Inputs and Outputs to use those devices while robot

operation.

Page 28

Exercise 7: Input/Output

Appendix

In order to be able to do this exercise you need two input/output

boxes.

Those parts are all from the RS website as well as the references.

(www.rs-components.com)

Part list needed for these boxes are below:

• 8x 8mm green LED 24V (ref. nbr RS 206867)

• 2x Aluminium sloped panel case 190x138x47 (ref.nbr. RS

505820)

• 2x 8mm red LED 24V (ref.nbr.RS 206845)

• 2x 8mm yellow LED 24V (ref.nbr.RS 206463)

• 16x On Off (On) switches 4A 30V (ref.nbr.RS 1035502)

• 2x Honda Connector MR-50M (Fanuc ref.nbr. 816052)

• 2x Honda Connector Case MR-50M (Fanuc ref.nbr. 836896)

• 6m Flex cable (min. 18 cables, 3m per box)

Page 29

Exercise 7: Input/Output

Appendix

You start by drilling holes in your case for the LEDs and the

switches.

If you use our recommended case, you can take the plans below for

the drilling.

In the first box, put in 8 switches and 8 Green LEDs (you can take a

colour of your likings)

In the second one, put in also 8 switches, but there you only need 4

LEDs and we would recommend to use 2 red and 2 yellow LEDs.

If you use the recommended box, you can use the following drawing

for the dimensions and the positions for the holes that need to be

drilled in the aluminium board.

Page 30

Exercise 7: Input/Output

Appendix

Page 31

Exercise 7: Input/Output

Appendix

Page 32

CRMA58

Pin 50

Pin 01

Pin 02

Pin 03

Pin 04

Pin 05

Pin 06

Pin 07

Pin 08

Pin 29

Pin 19

24V

Switch 1

Switch 2

Switch 3

Switch 4

Switch 5

Switch 6

Switch 7

Switch 8

The 0V to the SDICOM1 connection is made directly in the Honda

connector (CRMA58).

Connect the 24V to all the On and (ON) positions of the switches.

Then connect the OFF positions of all the switches to the cable.

Make sure to note which cable belongs to what switch.

For complete plans refer to R-30iB Mate Controller MAINTENANCE MANUAL

section 4.3 “INTERFACE FOR PERIPHERAL DEVICES”.

Connector on the Controller Board

Honda

Connector I/O Box

Exercise 7: Input/Output

Appendix

Page 33

CRMA58

Pin 49

Pin 31

Pin 38

Pin 34

Pin 35

Pin 36

Pin 37

Pin 33

Pin 39

Pin 40

Pin 18 0V

LED1

LED2

LED3

LED4

LED5

LED6

LED7

LED8

Then connect the LEDs in the first box. This time connect all the 0V

together and connect the 24V separately with the LEDs. Connect

the 24V to the DOSRC1 as shown above.

Connector on the Controller Board
Honda

Connector

I/O Box

Exercise 7: Input/Output

Appendix

Page 34

CRMA59

Pin 50

Pin 01

Pin 02

Pin 03

Pin 04

Pin 05

Pin 06

Pin 07

Pin 08

Pin 29

Pin 19

24V

Switch 1

Switch 2

Switch 3

Switch 4

Switch 5

Switch 6

Switch 7

Switch 8

The second box is done exactly the same than the first box and we

would also recommend you to use the same cable combination than

in the first box to avoid confusion later on. This will also allow you to

change the connectors without having short circuits.

Connector on the Controller Board
Honda

Connector UOP Box

Exercise 7: Input/Output

Appendix

Page 35

CRMA59

Pin 49

Pin 31

Pin 33

Pin 34

Pin 35

Pin 36

Pin 18 0V

LED1

LED2

LED3

LED4

Again the LEDs in Box 2 connect the same as in box 1 only that this

time, there are only 4 LEDs as opposed to 8 for the first box. Do not

forget to connect 24V to DOSRC2.

UOP Box

Honda

ConnectorConnector on the Controller Board

Exercise 7: Input/Output

User Inputs/Outputs

Page 36

R30iB Mate Controller CRMA15/CRMA16

CRMA 58 CRMA 59

DI

Signal Wire Pin # Input

UOP In

Signal Wire Pin # Input

S1 Blue 1 DI 101 S1 Blue 1 XHOLD

S2 Red 2 DI 102 S2 Red 2 RESET

S3 Purple 3 DI 103 S3 Purple 3 START

S4 Gray 4 DI 104 S4 Gray 4 ENBL

S5 Pink 5 DI 105 S5 Pink 5 PNS1

S6 Green 6 DI 106 S6 Green 6 PNS2

S7 White 7 DI 107 S7 White 7 PNS3

S8 Yellow 8 DI 108 S8 Yellow 8 PNS4

/ Brown 50 24V / Brown 50 24V

DO

Signal Wire Pin # Output

UOP Out

Signal Wire Pin # Output

LED1 Gray/Pink 33 DO 101 LED1 Gray/Pink 33 CMDENBL

LED2 Red/Blue 34 DO 102 LED2 Red/Blue 34 FAULT

LED3 Brown/Green 35 DO 103 LED3 Brown/Green 35 BATALM

LED4 White/Yellow 36 DO 104 LED4
White/Yello

w 36 BUSY

LED5 Yellow/Brown 37 DO 105 / White/Gray 18 0V

LED6 White/Green 38 DO 106

LED7 White/Pink 39 DO 107

LED8 Pink/Brown 40 DO 108

/ White/Gray 18 0V

Internal
Connection

Signal Pin # Signal Pin #
Internal

Connection

Signal Pin # Signal Pin #

SDICOM1 19 0V 29 SDICOM3 19 0V 29

DOSRC1 31 24V 49 DOSRC2 31 24V 49

Exercise 7: Input/Output

User Inputs/Outputs

To plug our cases on the robot controller, the first thing you need to

do is to turn of the power of the controller and unplug the cell.

The cell has to stay unplugged until the door of the controller is

closed again!

Open the door of the controller. Pull in the cables on the right side of

the controller. The plugs for the Honda connectors are on the right.

Make sure that you connect the right connector to the right plug

(there is notated which one is CRMA58 and which one CRMA59).

Make sure that CRMA16 and 15 are also connected. To find them

follow the cables from the plugs or simply search for CRMA16 and

15 on the door. They are on the bottom left side on the door.

Page 37

Exercise 8

Different Types of Stop

Page 2

Exercise 8

Different Types of Stop

Table of contents

Abstract - 3

Background - 5

Equipment - 6

Different Stop Categories - 7

Emergency Stop (E-Stop) - 8

Deadman Switch Release - 9

Open Fence - 10

Hold - 11

Recapitulation - 12

Page 4

Exercise 8: Different Types of Stop

Background

Stops are one of the most obvious functions a robot or any machine

must have. But understanding the different stops and why we use

different stops is not so obvious.

A robot that has finished its work has to stop.

A robot that is doing a motion that it is not supposed to do has to be

stopped.

There are lot of different scenarios where we need stops and we are

going to give you an overview over those different stops.

Page 5

Exercise 6: Advanced Programing

Equipment

For this exercise, you need:

Education Cell

Page 6

Exercise 8: Different Types of Stop

Different Stop Categories

There are 3 different categories for stops (following IEC 60204-1):

• Category 2 stop

Category 2 stop is a controlled stop where after the stop, power

is still left available to the actuators (in our case motors)

• Category 1 stop

Category 1 stop is a controlled stop, where after the stop, no

more power is left available to the actuators.

• Category 0 stop

Immediate stop with power removed from the actuators. The

motion path of this deceleration is uncontrolled.

You see that the different categories are more ore less severe.

Note that the more severe a stop category is, the more harmful it is

for robot and the more safe it is for a human or outside equipment.

To recover from a category 1 or 0 stop, remove the cause for the

stop (release E-stop button, close the fence…) and press the reset

button. Then you can continue or restart the program (this is

recommended after cat 0 stop).

For further information about stop categories, refer to OM section 7

of the Safety Precautions “Stop Type of Robot”.

Page 7

Exercise 8: Different Types of Stop

Emergency Stop (E-Stop)

Emergency stop is used in an emergency.

This stop is used if people are in danger or the robot is about to

collide with outside equipment, objects or also other robots. It is

primarily used to avoid damage or injury as a last option and is

therefor a category 0 stop. This is the most brutal stop for the robot

but also the safest as it stops the robot immediately.

Now try and use this emergency stop button while the robot is

executing a program.

Program Advanced_Prog_Ex should be well suited for this purpose.

Start the program and then, while in motion press the Emergency

stop button. Observe how the robot stops.

For more information about emergency stop, refer to OM procedure 6-1

“Emergency Stop and recovery”.

Page 8

PLEASE
NOTE THAT

In an emergency stop, the robot may leave it’s

original path. After reset and start, the robot will first

move back onto its old track and then continue.

Exercise 8: Different Types of Stop

Deadman Switch Release

In order to jog the robot or execute a program in teach mode, the

Deadman switch has to be held in the intermediate position.

This is done to prevent the robot from injuring the operator. In case

that the robot approaches the operator fast, the operator can

release the Deadman switch and the robot will stop, or the operator

may panic and grab the Deadman switch harder, so then the robot

will also stop.

From the description above you can understand that this has to be

also a category 0 stop as the safety of the operator stands in first

place.

Try and reproduce this stop by executing the Advanced_Prog_Ex

program in teach mode while grabbing the Deadman switch and

then release the switch and observe if you see the same behaviour

than with the E-Stop.

Again, while continuing the program, pay attention as the robot is

probably slightly besides its track and will do an unexpected

movement right after start.

Page 9

Exercise 8: Different Types of Stop

Open Fence

Normally, the robot is surrounded by some sort of fence. This can be

a physical fence, but also a light barrier where the robot detects

when someone enters the operating zone. In our case, it is the door

of the cell. In either way, when the gate is opened (or door) the robot

has to be stopped. But in this case, the robot has some time to stop.

The norm says that the robot has 1 second to stop as the operator

needs some time to get into the reach of the robot.

This is the reason why opening the fence uses category 1 stop, as

entering the operating zone does not mean direct danger for that

person.

Try and run the program again and this time, while operation, open

the door and try and see the difference between the two category 0

stops before and the category 1 stop now.

Because this is a controlled stop, there is no danger to continue the

cycle of the robot as it is still on the motion path.

Page 10

Exercise 8: Different Types of Stop

Hold

Hold is used to stop the robot in a controlled way in order to change

something in the settings of the robot or the configuration of the

robot. If an operator wants to stop the robot when there is no danger

situation, he should always use the hold function.

If Hold button is pressed, the robot does a controlled stop but there

will be no error message and the robot can be restarted from the

position that it has been hold.

Hold is a category 2 stop.

Try this also with our program and continue (start) the program

again.

For further information about hold stop, refer to OM procedure 6-2 “Hold and

recovery”.

Page 11

Exercise 8: Different Types of Stop

Recapitulation

In this exercise, you should have learned the different stop

categories available and in which case which type of stop is applied.

You should know the consequences from the different stops on

people and on the robot.

You should be able to remove the cause of a stop, reset the robot

and restart the robot.

Page 12

Exercise 9

DCS Safe Zone

Page 2

Exercise 9

DCS Safe Zone

Table of contents

Abstract - 3

Background - 5

Equipment - 6

Visualizing the DCS Safe

Zone

- 7

Setup of DCS Safe Zone - 13

Moving in new Safe Zone - 18

Setup of User Model - 21

Recapitulation - 26

Page 4

Exercise 9: DCS Safe Zone

Background

DCS Safe Zones are mostly used in industry when a robot moves in

an area where other robots also operate or even people may get

into the range of the robot.

In our case, the DCS Safe Zone makes sure, the robot can’t get

through the walls of the cell. As the name says it already, the DCS

Safe Zone tells the robot in which zone it is safe to operate and

stops it if it is about to get through the zone.

A zone can be set up from many different, simple zones combined,

and so create more complex zones.

Page 5

Exercise 9: DCS Safe Zone

Equipment

For this exercise you need:

Education Cell

Fixed Pin – to be held in the gripper this time

Page 6

Exercise 9: DCS Safe Zone

Visualizing the DCS Safe Zone

To visualize you the effects of the DCS Safe zone, we want you to

try and move the robot out of the safe zone.

Turn the gripper by 90 degrees so that the tip of the gripper points

towards the door.

Page 7

Exercise 9: DCS Safe Zone

Visualizing the DCS Safe Zone

Jog the robot in direction of the door and watch how far the robot

will move. At a given moment the robot will stop and it is not

possible anymore to move the robot in any direction except away

from the border of the DCS Safe Zone.

The TP will output the following error message.

To release the robot from its error state, release the shift button,

then press the shift button again and press reset. Now jog the robot

away from the border of the zone.

Page 8

Exercise 9: DCS Safe Zone

Visualizing the DCS Safe Zone

Jog the robot away from the door and turn the tool so that the robot

arm is near the door.

Jog the robot again in direction of the door. The robot will again stop

in front of the door.

Page 9

Exercise 9: DCS Safe Zone

Visualizing the DCS Safe Zone

This is possible because not only does the controller verifies

whether the tool is outside the box, but it also verifies the robot

itself, so that no part of the robot can get into a dangerous position.

Page 10

Exercise 9: DCS Safe Zone

Visualizing the DCS Safe Zone

Now we want to show you that not only the safe zone is on the side

but also on the top.

In order to see this, jog your robot so that your tool is facing

upwards.

Page 11

Exercise 9: DCS Safe Zone

Visualizing the DCS Safe Zone

Then, jog the robot upwards until it stops again with the error

message.

As next step, we will change the DCS Safe Zone and see the

difference in the restricting area of the robot.

Page 12

Exercise 9: DCS Safe Zone

Setup of DCS Safe Zone

First we need to get to the settings of the DCS. Therefore press the

menu key, go to second page system (6) and then to DCS (8).

There are different methods of setting a DCS Safe Zone. We are

using the Cartesian position check. If you have not yet moved the

robot, there should be standing UNSF meaning unsafe, because the

robot is on the border of the Safe Zone and therefore not safe.

Page 13

You are now about to change system files and settings.

Make sure that you do everything exactly as we advise you

to do, because otherwise serious damage and injury might

occur!

PLEASE
NOTE THAT

Exercise 9: DCS Safe Zone

Setup of DCS Safe Zone

Go into the Cartesian position check.

Currently there is only one Safe Zone enabled. But it is possible to

enable more than just one Safe Zones and then the controller will

constantly check if all the robot parts are inside (or outside

depending on the individual setting) the enabled zones.

Page 14

Exercise 9: DCS Safe Zone

Setup of DCS Safe Zone

We now want to create our own zone. Go to the second position and

enter. Firstly you need to acknowledge that you want to make

changes.

Then give our frame a name, set Method (3) to Diagonal(IN),Target

Model 1(5) to Robot Model, Target Model 2(6) to Tool Change, and

copy the position data for points 1 and 2.

Finally Enable this Frame (2).

Page 15

Exercise 9: DCS Safe Zone

Setup of DCS Safe Zone

Now the our new Frame is enabled, but the old one is also still

enabled. Go to the old one “Ed Cell Frame” and disable that Frame.

You should now see that the old Frame is disabled, and the new is

enabled.

The CHGD mark means that you have to apply the changes and

cycle power to make current settings active.

To make the change valid, you have to press the Prev button to get

back in the first DCS menu. Press F2 (Apply).

Page 16

Those settings are not active until you

applied and cycled the power!

Exercise 9: DCS Safe Zone

Setup of DCS Safe Zone

You will be asked “Code Number”, then enter 1111 then there will be

a second window where you press F4 (OK). Now you have to cycle

power. After this procedure, your new DCS Safe Zone is active.

Page 17

Exercise 9: DCS Safe Zone

Moving in new Safe Zone

The settings should now look like this. If it doesn’t, go back to page

13 and do the procedure again.

Now release the error and jog the robot a bit down (about 100mm).

We want to change the height of our frame, so go back into the

settings.

Change the height from the point 1 (Z-coordinate) to 340. Apply the

settings and cycle power.

Page 18

Exercise 9: DCS Safe Zone

Moving in new DCS Safe Zone

Now try and move up again. You will notice that the robot stops

much earlier than it did before.

Page 19

Before

After

Exercise 9: DCS Safe Zone

Moving in new DCS Safe Zone

Now reset the Safe Zone to the old value (400). See the following

picture to make sure the DCS Safe Zone is right.

Page 20

Exercise 9: DCS Safe Zone

Setup of User Model

The other possibility is to change the tool setting, instead of the

zone setting. To do this, we firstly need to set the User Model.

(There is another possibility, to use the Tool Frame, but we will only

cover the User Model setup in this exercise)

In the User Model settings there should already be the Schunk

Gripper. We will however create a new one to show you how to do it.

Page 21

Exercise 9: DCS Safe Zone

Setup of User Model

Enter the second one.

Firstly set a name.

We then have the possibility to set 10 different models, that,

combined are used as our model. But for this simple tool, we only

need one model. Enter the first model.

Page 22

Exercise 9: DCS Safe Zone

Setup of User Model

We want to setup our gripper with the long TCP Pin, we used for

TCP teaching (table pin). As this Pin is considerably longer than the

gripper, we need to teach a new model to our controller in order to

avoid the tip of the pin to go outside the safe zone.

First of all we need to enable the current model, then we choose

the Line_seg as shape, insert 30mm as size and then change the Z

position of the 2nd point to 235. (distance in mm from the final flange

to the tip of the Pin)

For more information about the different possibilities to set up a User Model

refer to manual R-30iB_Plus_DCS_Manual section 3.4. “Setup of User

Model” and 4.2 “Setup of User Model”.

You can set this distance according to the length of your TCP pin, if

it is shorter or longer. The length from the flange to the tip of the

gripper is 115mm.

Page 23

Exercise 9: DCS Safe Zone

Setup of User Model

Now as we have setup the gripper model, we need to apply this

model in our cart. position check. In those settings, we have the

possibility to set 3 target models, which the controller is checking

while operating. The first target model (Robot model) is the robot.

This means that the robot itself cannot exit the safe zone. As target

Model 2 we will set user model 2, the tool we just created.

Now you have to apply again the settings and cycle power. Before

you cycle power, jog the robot down, so that the gripper will not end

up, being already beyond the zone border.

Your new Tool should now be setup. (Make sure to actually put in

the long TCP Pin in the Gripper)

Page 24

Exercise 9: DCS Safe Zone

Setup of User Model

To check, jog the robot up until it stops. If you have done everything

right, the TCP Pin tip should stop where the gripper tip stopped the

first time.

You can try the same on the side wall.

If you want, you can change between the “Ed Cell Frame” and your

Frame to see the difference between the two settings.

In order to do this, make sure that you enable the first zone, then

disable the second zone, apply the settings and cycle power.

After you are done, make sure to make the first zone active again

(enable the first one, disable the second one) so that no dysfunction

might occur, due to bad safe zone settings. Apply the settings and

cycle power. Make sure the settings are accepted until you finish

this exercise.

Page 25

You need to make sure that the TCP Pin is out of the

gripper, because otherwise, the tip can crash into the

walls!

PLEASE
NOTE THAT

Exercise 9: DCS Safe Zone

Recapitulation

In this exercise, you should have learned what a DCS Safe Zone is

and how it operates and works.

You should be able to set up a safe zone on your own and also set

up a User Model according to your tool that is attached to your

gripper.

You should know how to apply the settings.

Page 26

Exercise 10

Customized iPendant Screen

Page 2

Exercise 10

Customized iPendant Screen

Table of contents

Abstract - 3

Background - 5

Equipment - 6

MS SharePoint Installation - 7

First Steps - 8

Label - 10

Upload the Page to the Robot - 12

Displaying the Page - 15

Buttons and Lamps - 16

Images - 23

Call a Page from a Program - 25

Multi Control - 26

Recapitulation - 29

Page 4

Exercise 10: Customized iPendant Screen

Background

User defined HTML pages are used to give the operator a visual

feedback of what the robot is doing.

It can also be an interface for the operator to give orders to the robot

without the need of additional inputs (refer to I/O Box).

You have already used some HTML pages while operating the robot

without specifically knowing it. The pages displayed during the

AAA_Demo program were actually customized HTML pages called

by the program.

As you may remember, those pages helped to give a the possibility

for the user to input some commands and to get some input about

what is happening with the robot.

Page 5

In this exercise, all references are made to
iPendant_customization_operator_manual_[B-
83594EN_01] (iCOM), except if announced differently.

PLEASE
NOTE THAT

Exercise 10: Customized iPendant Screen

Equipment

For this exercise you need:

Education Cell

A PC with Roboguide installed

A Memory Stick

Page 6

Exercise 10: Customized iPendant Screen

MS SharePoint Designer Installation

We recommend you to do the .stm sites on the Microsoft Office

SharePoint Designer 2007. This is a Software free to download.

A detailed description of how to install SharePoint to your PC refer

to iCOM section 3.3 “Installation”.

Make sure you add ActiveX Control to your toolbar, you will use this

afterwards for every command you add to your page.(refer to iCOM

section 3.3.1 “ActiveX Control Shortcut”)

Page 7

Exercise 10: Customized iPendant Screen

First Steps

In this exercise, we will not cover all the different controls available.

You should however be able after this exercise, to use those

controls not covered in this exercise with the help of those covered

and the manual.

To get a quick overview of all the controls available refer to iCOM

section 3.4 “Control Features Summary”.

The following controls will be covered by this exercise:

• Label

• ToggleLamp

• ToggleButton

• Image (not in manual)

• Multi

Page 8

Exercise 10: Customized iPendant Screen

First Steps

Now we will start our exercise, by creating a new document in

SharePoint.

Firstly we want to change the title of our page to Exercise10 first

page.

Page 9

Exercise 10: Customized iPendant Screen

Label

We start by adding a simple label control. Click the ActiveX Control

icon in the toolbar, select the FANUC iPendant Label Control in the

list and press OK.

You have now a label on your page. You can position that label with

space, tab and enter. Alternatively you can input a new style on the

right bottom.

You will be able to set position of the label, font settings etc.

To apply those settings to a label (or other control) change the <p>

to <p class=“nameofyourstyle”>.

Page 10

Exercise 10: Customized iPendant Screen

Label

To change the settings of the control, double click on the control.

For detailed information, refer to iCOM section 5.4.1 “Label Control”.

Further in the exercise, we will go a bit deeper into several settings.

For now, add a Caption in the Label settings and change the size of

the box in the Object Tag settings to 250px width and 150px height.

Now save your document as an .stm (simply add .stm behind the

name of your document).

Page 11

Exercise 10: Customized iPendant Screen

Upload the Page to the Robot

To upload the page to Roboguide, you need to put the document in

the UD1 folder from the robot. This folder is located at

Documents\My Workcells\FEC_Education_Cell_V2_4\Robot_1\UD1.

To upload the page to the real robot, you need to put the document

on a USB MS and plug it into the controller.

The following procedures are the same on the robot than on

Roboguide.

Press the menu button, then go to File (7). Press F5 (Util) and Set

Device. Choose USB Disk (6).

Page 12

Exercise 10: Customized iPendant Screen

Upload the Page to the Robot

As you have only the .stm file on the USB MS, you can press F3

(Load) and load all files.

You now have the page on the robot controller.

The only thing that now has to be done is to link the page. In order

to do this, press the menu button again, then go to the second side

and select browser (8).

Page 13

Exercise 10: Customized iPendant Screen

Upload the Page to the Robot

Press F5 (Home) and go to Robot Tools and select Browser Tool.

Then select Browser Type Menu and add your page to the list. The

address will be /fr/nameofyourdocument.stm.

Page 14

Exercise 10: Customized iPendant Screen

Displaying the Page

If you have done everything as told, your page should now be linked

in the robot controller.

To display your page press F1 (Type) and select the name you

assigned to your page. You will get to your new page.

Make sure that after each change of your page or new upload to

press F3 (CLR Cache) because otherwise it may be that the actual

new page is not (correctly) displayed.

Page 15

Exercise 10: Customized iPendant Screen

Buttons and Lamps

Now that we know the basics about programming, uploading and

displaying a page, we want to create a User Interface for the

Stopwatch program. (refer to exercise 7)

We need to have 7 lamps to represent the outputs and 3 buttons to

represent the inputs. And finally a Label box to display the register.

The design of this page is up to you. You should end up with

something similar to the following:

Page 16

Label

ToggleLamp

ToggleButton

Exercise 10: Customized iPendant Screen

Buttons and Lamps

All labels except the yellow one (you can give it the colour you like)

can already be set as in the previous page.

As for the yellow label, you need to change the data type to 101-

Numeric Register and then input Data Index 34. That should be the

Timer register if you haven’t changed anything. Check the register if

it still is this value and otherwise change the register in the label.

Page 17

Exercise 10: Customized iPendant Screen

Buttons and Lamps

The lamps and the buttons work quite similarly to the label we just

set up.

For the lamps, you need to switch the Data Type under ToggleLamp

to 2 - DO and input the DataIndex that corresponds to the lamp.

(102 for the first lamp, 103 for the second…for explanation refer to

exercise 7)

Under Colors, you can change the colours for true and false, as well

as the colour if you want to have a caption.

Page 18

Exercise 10: Customized iPendant Screen

Buttons and Lamps

For the buttons, you need to switch the Data Type to 1 - DI under

ToggleButton and the Data Index according to the buttons. (101 for

first to 103 for third)

You should also put in captions for the buttons. (Start Timer, Stop

Timer, Reset Timer)

You should also change the monitor settings. Check the Periodic

Box and change the update rate to 50ms. This will avoid that the

lights seem as if they are not really a clock, which we want them to

be.

Page 19

Exercise 10: Customized iPendant Screen

Buttons and Lamps

Save your page, upload it to the robot and link it.

Start the I_O_Timer program, then switch to the web page and

check whether the inputs and outputs work. (togglelamp,

togglebutton)

In order to this to work, you have to set the DI101 to 103 to Sim,

because otherwise, the robot cannot change the input without an

actual input.

For further Information about how to simulate DI refer to

R-30iB_Basic_Operator_Manual section 6.4.2 “Simulated I/O” and procedure

6-11 “Simulated input/output”.

Page 20

Exercise 10: Customized iPendant Screen

Buttons and Lamps

To make the operation a bit easier, it is possible to link some buttons

to the F2-F5 buttons.

To do this you need to go to the settings of the buttons and switch

the View type from 0-Push to an F. (F2 for Start Timer for example

etc.)

Page 21

Exercise 10: Customized iPendant Screen

Buttons and Lamps

Save your page and upload it to the Controller and try the program

again.

Your buttons should now be linked to your toolbar.

Page 22

Exercise 10: Customized iPendant Screen

Images

You also have the possibility to add pictures to your page.

The simple Image command, is NOT in the ActiveX Command list,

but on the right side in your toolbox.

In the image settings you can browse for pictures and insert them.

Page 23

PLEASE
NOTE THAT

You should make sure to only input .img, .gif and

.jpg pictures because the controller can’t read the

other formats.

Exercise 10: Customized iPendant Screen

Images

To upload the page, the procedure is nearly the same than before,

only that you need to put the picture also on the UD1 and upload

both the page and the picture. (by uploading *all files, you do not

need to worry about something not being uploaded)

Link the page again, clear the cache and then you should now have

the picture in your page. (If you haven’t changed the name of your

page, you do not need to link the page again, just go to home and

clear the cache, then go back and the new page should be

displayed.

Page 24

Exercise 10: Customized iPendant Screen

Call a Page from a Program

Now as we have a nice interface, we want our program to call that

interface as soon as it is started. There is already a program in the

controller called DSP_WEBP() which will call a selected webpage.

The number of your page is the number which is in front of your

page in Type.

Yours should have number 6.

Add a line in front of the program and call DSP_WEBP(6).

Page 25

Exercise 10: Customized iPendant Screen

Multi Control

This is the last function described in this exercise. The Multi Control

can be considered as an image but which can change for different

values for registers, inputs or outputs. A maximum of 10 different

images can be displayed with one Multi Control.

We want to use this Multi Control now to do a progress bar, which

then shows the progress of the Stopwatch.

But first thing we need are the different lengths of bars. We

recommend you to do them on MS Paint starting with a 50x50px

box going up to 500x50px by increments of 50px. Make sure to

create a files readable for the controller.

Then input 3 Multi Controls to the Page and put labels above the

Multi controls for the user to understand what the progress bar

means.

Page 26

Multi Controls

Exercise 10: Customized iPendant Screen

Multi Control

Set the DataType to Numeric Register and the DataIndex to 50, 51

and 52. (We will use them later in the program)

Then in the Multi Change, set the Data Nbrs 1-9.

Make sure to set these for every Multi Control.

For Data No. 1 should be used the 50xx50px bar, for No. 2 the

50x100px etc.

As for the ToggleLamp controls, change the monitor settings the

same way as for the lamps.

And make sure that your Multi commands are actually big enough to

fit the progress bars (50x500px)

Page 27

Exercise 10: Customized iPendant Screen

Multi Control

Make sure you link also your buttons to the right DIs.

Now you only have to save and upload the page. Remember that

you need to upload also the bars you created on Paint.

For now, this user frame will not work on with the current program.

You can start, stop and reset the timer, but as there are no outputs

on the registers we set for the Multi commands, they won’t change.

Make a copy of the I_O_TIMER to I_O_TIMER_PROG_BAR. Try

and change the program in a way, that it will output the seconds

from 1 to 9 on R[50], every tenth of seconds on 51 (10-50) and

every minute on 52.

Tip: You will need to change the REGISTER_TO_BINARY to a

program that splits up the register into minutes, 10ths of seconds

and seconds and then places them in the right register.

If you don’t know how to do this program, go to the appendix where

we have put a working program with explanations.

Now as you have created your program, call your page in the

beginning of your program (normally it should be no. 7).

Try your program and user frame and change it if you like.

Page 28

Exercise 10: Customized iPendant Screen

Recapitulation

In this exercise you should have seen the basic Controls used to

create customized webpages on the iPendant.

You should be able to create, save, upload and display your own

webpages.

You should know how to call a specific webpage during a program.

Page 29

Exercise 10: Customized iPendant Screen

Appendix

Page 30

Main Program

Sub Program

Exercise 11

Macro

Page 2

Exercise 11

Macro

Table of contents

Abstract - 3

Equipment - 5

Example of a Macro - 6

Programming a Macro - 7

Setting up a macro - 8

Macro type MF - 14

Calling a macro - 15

For this exercise, you need:

Education Cell

Exercise 11: Macro

Equipment

Page 5

The Education Cell already comes with a macro. Press the “SHIFT”

and “TOOL 1” key. You do not have to reset the faults or press the

deadman switch. You can see that the gripper will close or open.

We will program the same program and use it for the “TOOL 2” key.

Later you can program your own macro.

Exercise 11: Macro

Example of a macro

Page 6

A macro is programmed just like a normal program. Press the

“SELECT” key and create a new program. Name the program

“TOGGLE_HAND”. The program should open the gripper if it is

closed and close the gripper if it is open.

Exercise 11: Macro

Programming a Macro

Page 7

To set up a macro you have to go to the macro screen. Press on the

Teach Pendant “MENU”, “6 SETUP” and then select “7 MACRO”.

On the first line we have the already set up macro. We will go to the

second line and give the macro an instruction name, in this case we

will call it Toggle_Hand (the instruction name does not need to be

the same name as the program we will use).

Exercise 11: Macro

Setting up a Macro

Page 8

Exercise 11: Macro

Setting up a Macro

Page 9

Now we have to select a program. Go under program and press F4

“Choice”, you can now select a program to use. The programs are

alphabetically ordered, so search for our program “TOGGLE_HAND”
and press “ENTER”.

Now we have to select the type of the macro, go to the ‘—’ and press F4

“Choice”

Select ‘SU’ and for the assign number enter the number 2.

Exercise 11: Macro

Setting up a Macro

Page 10

For more details refer to OM section 9.1.1 “Setting Macro Instructions”.

Now we have finished to set up the macro. Press the “SHIFT” and

“TOOL 2” keys.

As you can see nothing is happening. We still have to press the

deadman switch and then we can press “SHIFT” and “TOOL 2”.

To change that we have to change a setting in the program

“TOGGLE_HAND”. The setting we are changing can only be

changed if there is no motion instruction (you can use motion

instruction in a macro but always set the UFrame and UTool in the

program, also be careful on the speed of the motion).

Go to the program, press the “NEXT” key and press F2 “Detail”.

Exercise 11: Macro

Setting up a Macro

Page 11

Scroll down to ‘Group Mask’.

Now we have to change the 1 to an asterisk ‘*’. Move the cursor to

the 1 and press the F5 button to change it to ‘*’.

Exercise 11: Macro

Setting up a Macro

Page 12

Press F1 “End” to go back to the select screen and now the macro

should work as planned.

Press the “SHIFT” and “TOOL 2” key and see how the gripper

closes and opens.

Only one Macro can be used on each “User” key.

For more details on executing a macro refer to OM section 9.1.2 “Executing

Macro Instructions”.

Exercise 11: Macro

Setting up a Macro

Page 13

Instead of the macro type ‘SU’ you can also use ‘MF’. To use ‘MF’

macros you just need to press the “TOOL 1 “ and select the macro

you want, then press “SHIFT” and F3 “Exec”. Up to 10 macros can

be assigned to each “User” key. You can assign the numbers 1-10

for “TOOL 1” and the numbers 11-20 for “TOOL 2”.

Exercise 11: Macro

Macro type MF

Page 14

You call a macro in another program exactly like any other program.

The only difference is that you have to press F2 for ‘macro’ in the

program selection menu.

Exercise 11: Macro

Calling a Macro

Page 15

Or if you have set up a macro in the macro screen then you can call

it by pressing F1 ‘Inst’, go to the 3 page, select “MACRO” and chose

the macro you need.

Exercise 11: Macro

Calling a Macro

Page 15

Exercise 12

Menu utility

Page 2

Exercise 12

Menu utility

Table of contents

Abstract - 3

Equipment - 5

Menu Utility Screen - 6

PROMPTOK - 7

PROMPTYN - 12

LISTMENU - 16

For this exercise, you need:

Education Cell

Exercise 12: Menu Utility

Equipment

Page 5

To get to the Menu utility screen you have to press “MENU”, ‘6

Setup’ and then ‘3 Menu Utility’.

From there we can create and change some of these ‘utilities’.

Exercise 12: Menu Utility

Menu Utility Screen

Page 6

PROMPTOK macro is used to display a simple pop up where the

user has to press “ENTER” to proceed.

Press F2 ‘Details’ on Prompt box msg.

To create a new PROMPTOK press F3 ‘Create’. To make some

changes on existing PROMPTOK press F2 ‘Detail’.

Exercise 12: Menu Utility

PROMPTOK

Page 7

To create a PROMPTOK you have to press F3 ‘Create’. You then

will be asked which number it should have (every number can exist

only once, it’s the ID number), we enter the number 3 (if not already

taken).

We now have to give it a Menu name, in this example we will call it

“Hello world”.

Exercise 12: Menu Utility

PROMPTOK

Page 8

In a PROMPTOK you can use 5 lines. Each line will only show the

first 28 characters of the line.

As an example we put this sentence in the first line: “Hello world.

How are you doing?”. As you can see there is the symbol “>” and

this means that this is the maximum of characters which will be

shown.

You do not need to fill every line.

For the second line enter “Fine” and for the third “And you?”.

Exercise 12: Menu Utility

PROMPTOK

Page 9

To test the PROMPTOK press F3 ‘Test’.

This screen will pop up and to proceed press the “ENTER” key.

Now you can change the first line to ‘Hello world. How are you?’, so

the line is not cut off.

For further details see OM Optional Function 36.1.1 “Prompt Box Msg”.

To delete a PROMPTOK go back to the menu and go to the desired

PROMPTOK and press “NEXT” and then F3 ‘Clear’.

Exercise 12: Menu Utility

PROMPTOK

Page 10

To call a PROMPTOK in a program, use the ‘CALL’ instruction.

When you choose a program press F2 ‘Macro’ and select

‘PROMPTOK’.

Now to define which PROMPTOK we want press F4 ‘Choice’, select ‘2

Constant’ and enter the number 3. The number we chose at the

beginning of creating a PROMPTOK is the ID of the PROMPTOK and

is needed to call the PROMPTOK.

Now you can start the program, the PROMPTOK will pop up on the

Teach Pendant and the user has to press “ENTER” to continue.

You can also call the PROMPTOK by going to the third page and

selecting “MACRO” instead of “CALL” and select ‘Prompt Box Msg’.

Exercise 12: Menu Utility

PROMPTOK

Page 11

Exercise 12: Menu Utility

PROMPTYN

Page 12

A PROMPTYN is a yes/no question which will be asked in a program.

Press F2 ‘Detail’ on ‘Prompt box yes/no’.

To create a PROMPTYN press F3 ‘Create’ and enter the number 3 (if not

already taken).

We give it a Menu name and enter 2 lines. The lines work exactly like in

PROMPTOK, they will only show 28 characters.

Exercise 12: Menu Utility

PROMPTYN

Page 13

Press F3 ‘Test’ to see the pop up. Use the arrow keys to navigate to ‘NO’

or ‘YES’ and press “ENTER” on your answer.

For further details see OM Optional Function 36.1.2 “Prompt Box YES/NO Menu”.

To call a PROMPTYN in a program use the “CALL” instruction and press

F2 ‘Macro’ when you chose a program and select ‘PROMPTYN’.

Exercise 12: Menu Utility

PROMPTYN

Page 14

Press F4 ‘Choice’, select ‘2 Constant’ and enter the ID number ,of our

PROMPTYN, in this case 3.

Because PROMPTYN has an output we have to save this output on a

Register, so press F4 ‘Choice’ again, select ‘2 Constant’ and enter the

number 50 for R[50].

If the answer is ‘YES’ the value of R[50]=1 otherwise it will be 0.

Exercise 12: Menu Utility

PROMPTYN

Page 15

Now we program with the ‘IF’ function what will happen when we

answer the PROMPTYN. If the answer is ‘YES’, we will call the

PROMPTOK, we created previously, if ‘NO’ we abort the

program. For the instruction ‘Abort’ press F1 ‘INST’, ‘8 next

page’, ‘7 Program control’ and then select ‘Abort’.

For further details on the ‘Abort instruction’ see OM section 4.14.2 “Abort Instruction”

Now you can test the program. Save this program because we

will use it in the next example.

Exercise 12: Menu Utility

LISTMENU

Page 16

A LISTMENU gives you a list where you have to choose an answer

between the number 1-8.

Go to the menu utility screen and press F2 ‘Detail’ on ‘Select from a list’.

To create a LISTMENU press F3 ‘Create’ and give it the number 3 (if not

already taken). We will give the LISTMENU the name ‘list choice’, the Title

will be “What do you want to do?” and the first line will be ‘Abort’ second

‘PROMPTOK’ and third ‘PROMPTYN’. Each line will display 28 characters.

Exercise 12: Menu Utility

LISTMENU

Page 17

Now scroll down to ‘PROMPT’ and enter “Your choice”. This ‘PROMPT’ is

only for what will be displayed where the user enters his choice.

Now test the program with F3 ‘Test’ and enter your number of choice.

Exercise 12: Menu Utility

LISTMENU

Page 18

If you try to enter a number higher than 3 the program will say

‘Out of Range (1 – 3)’. This is to be sure the user does follow the

list and the program can be executed as programmed. You can

use up to 8 different lines to get an answer.

As you can also see the ‘Title’ will not be displayed but later when

we call it in a program it will be displayed.

For further details see OM Optional Function 36.1.3 “List Menu”.

Exercise 12: Menu Utility

LISTMENU

Page 19

To call a LISTMENU use the “CALL” instruction. Just like

previously press F2 ‘Macro’ when you are choosing a program

and select ‘LISTMENU’.

Now press F4 ‘Choice’, select ‘2 Constant’ and enter the ID

number 3. Then for the register which will save the answer, we

will use R[51]. If you use a LISTMENU always be sure how many

choices there are and what each choice should do. Press again

F4 ‘Choice’, ‘2 Constant’ and enter the number 51.

Exercise 12: Menu Utility

LISTMENU

Page 20

To program it we can use the ‘IF’ condition but when we need to

compare a lot of answers the ‘SELECT’ condition is faster (It

compares every answer in one go and not one step after another

like with the ‘IF’ condition.)

For further details on the conditional branch instruction ‘Select’ see OM section 4.7.4

“Conditional Branch Instruction”

To insert the ‘Select’ condition press F1 ‘INST’, ‘3 IF/SELECT’, ‘8

next page’ and then ‘Select R[]=…’. Enter the number 51 for R[]

and as the result 1. For the first result the program should abort

so create first another program with the abort instruction which

we can call. Or use the JMP LBL[] instruction.

Exercise 12: Menu Utility

LISTMENU

Page 21

For the second result go to the next line press F1 ‘INST’, ‘3

IF/SELECT’. ‘8 next page’ and then ‘5 <select> =…’. Because we

still use R[51] we do not need to clarify that again and can just

enter the next result which is 2 in the ‘…’. The program we call

does need an ‘Argument’, so select ‘3 CALL program()’ otherwise

we cannot enter the number for PROMPTOK(3).

For further details on Arguments see OM section 4.7.6 “Arguments”

Now we do that for the third result but we will use the program we

created with the PROMPTYN, so we do not need an argument.

Exercise 12: Menu Utility

LISTMENU

Page 22

The program is now finished and you can try it out.

Now you can try to program your own programs with

PROMPTOK, PROMPTYN and LISTMENU.

FA
CNCs,
Servo Motors
and Lasers

ROBOTS
Industrial Robots,
Accessories
and Software

ROBOCUT
CNC Wire-Cut
Electric Discharge
Machines

ROBODRILL
Compact
CNC Machining
Centres

ROBOSHOT
Electric CNC
Injection Moulding
Machines

ROBONANO
Ultra Precision
Machine

One common servo and control platform –
Infinite opportunities
THAT‘s FANUC!

WWW.FANUC.EU

Technical information subject to change without prior notice. All rights reserved. © 2020 FANUC Europe Corporation

	FANUC Educational Cell Excercises_FINAL
	Ex 1 Intro V2 EN_rev

	FANUC-Corporate-backpage-A4_PORTRAIT-EN

